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=P~L Introduction
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= Frst order systems

Electronic noise

= Amplifier noise
= [Thermomechanical noise

= Second order systems

Freguency noise

= Allan Deviation

-stimation
Nonlinearity as a limit
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First Order Systems

Direct Measurements




=PrL Force detection
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cPrL General detection -1t order systems

ME426 - Lecture 8 - Noise and Measurements

Thermomechanical noise

Transducel|

=

Fluctuations in ¢ Transduction noise

V
—'

Amplifier

rG

Amplifier’s
input noise

Digitizer

Date storage

Bit resolution
Range



=P~L Noise
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= Noise are fluctuations of a given parameter in a random or guasi-random manner
= These fluctuations are added in squares

= \WWe can define the power spectral density:

9020150 = (902 — (I())2) = lim =
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nat for random noise, autocorrelation is a Dirac delta and
uencies

= Definition of white noise

T T 2 00
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0 0 — 00

= Power spectral density and signal autocorrelation are fourier transforms of one

PSD Is constant for



=P~L Electronic noise

= Johnson-Nyquist noise
= [Thermodynamic fluctuations of electrons and electron states
= White till a cut-off frequency is reached

1% . SV — 4‘kBTR
G 2
= = For Room Temperature, R = 50 Q - S,/* = 0. 9F Sy = 0. 08i
> .
2 = Shot noise
s = Quantized charge transport
< —_
- = 1/f noise
S = Not clear origin, but clear that is a non-equilibrium noise
= = Can be found in almost every system
gV

= Sy o« — With 0.5 < a < 2 in general. For resistors: Sy «
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=PFL Amplifier noise
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= Amplifiers are NOT ideal
= They are composed by transistors, diodes, resistors, etc.
= WWe mode/ their noise by using: V,
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=P~L Thermomechanical noise

= Fuctuation-Dissipation theorermnr
= BEvery system with dissipation “feels” a fluctuating (random) “force”

= This theorem is very general but in mechanical devices creates thermomechanical
noise
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=P~L Thermomechanical noise

. Merr@o B
MerrX(t) + 0 X(t) + kerrx(t) = E(L)
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=P~L Thermomechanical noise

= Using equipartition theorem, we can write that:

. - MeprWo
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P~L Calibration of the amplitude

= Since the measurements are obtained in Volts, we need a way to calibrate our
transduction chain

= For that we use the thermomechanical noise:

= We first measure the noise in volts - Sy,

= Then we compare with the calculated S, using the fact that the thermomechanical
noise IS not white in amplitude
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=PrL Calibration of the amplitude
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= Since the measurements are obtained in Volts, we need a way to calibrate our

transduction chain

= For that we use the thermomechanical noise:
= We first measure the

= Then we compare wit
noise IS not white in a

= Total Gain = R,,G =
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=PrL Calibration of the amplitude
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Second Order Systems

“Transversal” Measurements




PFL General detection - 2"d order systems
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=prL Second order system
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responsivity
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=PrL Different ways to track the frequency
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= Consecutive frequency sweeps to unveil resonance peaks

= Slow
= Fitting reduces noise
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=PrL Different ways to track the frequency

= Consecutive frequency sweeps to unveil resonance peaks

= Slow -
@ = Ftting reduces noise 160
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=PrL Different ways to track the frequency
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= Consecutive frequency sweeps to unveil resonance neaks

= Slow
= Fitting reduces noise

= PLL
= Fast

= Easier to calculate limit
= Noisier?
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=PrL Different ways to track the frequency

= Consecutive frequency sweeps to unveil resonance peaks
= Slow
= Fitting reduces noise

= PLL
= Fast

= Easier to calculate limit
= Noisier?

= Oscillator (self sustained)
= [Fastest
= Noisiest due to phase freedom?
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=PrL Resonators & oscillators

= Resonators: passive, need of a external AC source
= Oscillators: active, only DC source, AC output
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=PrL Different ways to track the frequency

= Consecutive frequency sweeps to unveil resonance peaks
= Slow
= Fitting reduces noise

= PLL
= Fast

= Easier to calculate limit
= Noisier?

= Oscillator (self sustained)
= [Fastest
= Noisiest due to phase freedom?
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=PFL LiImit of detection
of

Re = Y: Responsivity
%3
OSmin = ﬁ5fmin = §¢min(T) = 9];_(;0}4(7)
1 l(fk+1r o fkr)2> al 1 Ll
o;(1) == ' ——); r == (t) dt
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24 D. Allan, et al., Standard terminology for fundamental frequency and time metrology, 42" FCS, 1988



=PFL LiImit of detection

o,(7) - Time domain
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=P~L Noise estimation (White noise)
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=P~L How do we calculate the limit of detection?

= To calculate either g, (1) or S4(f) we need to know the noise source

= |n general it Is difficult to identify, that is why we only have a formula for the cases
of White Frequency Modulation (the same as Phase Modulation Random Walk)
and Flicker FM with origin in a phase modulation fed-back.

1/2
1 (ENoise)
EOSC

O
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=P~L How do we calculate the limit of detection?

= To calculate either g, (1) or S4(f) we need to know the noise source

= |n general it Is difficult to identify, that is why we only have a formula for the cases
of White Frequency Modulation (the same as Phase Modulation Random Walk)
and Flicker FM with origin in a phase modulation fed-back.

1/2
1 (ENoise) /
O\ Epsc \

Why can’t we bring the Limit of Detection to zero then?
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=PFL Why not going NL? - A graphical view

X

A

* Nonlinearity as a limit
_Inear resonator

Nonlinear resonator

N

/AN
\>

»

ME426 - Lecture 8 - Noise and Measurements

29



=PFL Why not going NL? - A graphical view

= Nonlinearity as a limit
_|near resonator

Non ll( aAr resonator
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Amplitude-phase
conversion
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