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8 – Noise and 
Measurements



▪ First order systems
▪ Electronic noise

▪ Amplifier noise

▪ Thermomechanical noise

▪ Second order systems
▪ Frequency noise

▪ Allan Deviation

▪ Estimation

▪ Nonlinearity as a limit
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First Order Systems

Direct Measurements



Force detection
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General detection – 1st order systems
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▪ Noise are fluctuations of a given parameter in a random or quasi-random manner

▪ These fluctuations are added in squares

▪ We can define the power spectral density:

𝝑 𝒕 𝒏𝒐𝒊𝒔𝒆
𝟐 = 𝜗 𝑡 2 − 𝜗 𝑡 2 = lim

𝑇→∞

1

𝑇
න
0

𝑇

𝜗 𝑡 2 ⅆ𝑡 − න
0

𝑇

𝜗 𝑡 ⅆ𝑡

2

= න
−∞

∞

𝑺𝝑 𝒇 ⅆ𝒇

▪ Power spectral density and signal autocorrelation are fourier transforms of one 
another

▪ Note that for random noise, autocorrelation is a Dirac delta and PSD is constant for 
all frequencies

▪ Definition of white noise

Noise
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▪ Johnson-Nyquist noise
▪ Thermodynamic fluctuations of electrons and electron states

▪ White till a cut-off frequency is reached

▪ 𝑺𝑽 = 𝟒𝒌𝑩𝑻𝑹

▪ For Room Temperature, 𝑅 = 50 Ω → 𝑆𝑉
1/2

= 0.9
nV

Hz
; 𝑆𝑉 = 0.08

nV2

Hz

▪ Shot noise
▪ Quantized charge transport

▪ 𝑺𝑰 = 𝜻𝟐𝒆𝑰

▪ 1/f noise
▪ Not clear origin, but clear that is a non-equilibrium noise

▪ Can be found in almost every system

▪ 𝑺𝑽 ∝
𝟏

𝒇𝜶
; with 0.5 < 𝛼 < 2 in general. For resistors: 𝑺𝑽 ∝

𝜷

𝒏𝒄𝒂𝒓𝒓𝒊𝒆𝒓𝒔

𝑽𝟐

𝒇

Electronic noise
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Vth

Vn

In Zi

Rs

▪ Amplifiers are NOT ideal

▪ They are composed by transistors, diodes, resistors, etc.

▪ We model their noise by using:
▪ Input voltage noise 

▪ Input current noise

▪ Input impedance (noiseless)

▪ Noiseless gain stage (ideal amplifier)

Amplifier noise
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▪ Fluctuation-Dissipation theorem
▪ Every system with dissipation “feels” a fluctuating (random) “force”

▪ This theorem is very general but in mechanical devices creates thermomechanical 
noise

𝑚𝑒𝑓𝑓 ሷ𝑥 𝑡 +
𝑚𝑒𝑓𝑓𝜔0

𝑄
ሶ𝑥 𝑡 + 𝑘𝑒𝑓𝑓𝑥 𝑡 = 𝜉 𝑡

𝜉 𝑡 𝜉 𝑡′ = 2𝐹𝛿 𝑡 − 𝑡′ ;

𝜉 𝑡 = න
−∞

∞

𝜉 𝜔 ⅇ𝑖𝜔𝑡
ⅆ𝜔

2𝜋

𝜉 𝜔 = න
−∞

∞

𝜉 𝑡 ⅇ𝑖𝜔𝑡 ⅆ𝑡

𝜉 𝜔 𝜉 𝜔′ ∗ =ඵ
−∞

∞

𝜉 𝑡 𝜉 𝑡′ ⅇ−𝑖𝜔𝑡 ⅇ𝑖𝜔
′𝑡′ⅆ𝑡ⅆ𝑡′ = 2𝐹න

−∞

∞

ⅇ−𝑖 𝜔−𝜔
′ 𝑡 ⅆ𝑡 = 4𝜋𝐹𝛿 𝜔 − 𝜔′

Thermomechanical noise
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𝑚𝑒𝑓𝑓 ሷ𝑥 𝑡 +
𝑚𝑒𝑓𝑓𝜔0

𝑄
ሶ𝑥 𝑡 + 𝑘𝑒𝑓𝑓𝑥 𝑡 = 𝜉 𝑡

𝑋 𝜔 =

𝜉 𝜔
𝑚𝑒𝑓𝑓

𝜔0
2 −𝜔2 + i

𝜔0
𝑄
𝜔
→ 𝑋 𝜔 𝑋 𝜔′ ∗ =

1

𝑚𝑒𝑓𝑓
2

4𝜋𝐹𝛿 𝜔 − 𝜔′

𝜔0
2 −𝜔2 2 +

𝜔0𝜔
𝑄

2

𝑥2 𝑡 = ඵ
−∞

∞

𝑋 𝜔 𝑋 𝜔′ ∗ ⅇⅈ 𝜔−𝜔
′ 𝑡
ⅆ𝜔

2𝜋

ⅆ𝜔′

2𝜋
=

𝐹

𝜋𝑚𝑒𝑓𝑓
2 න

−∞

∞ ⅆ𝜔

𝜔0
2 − 𝜔2 2 +

𝜔0
𝑄
𝜔

2 ≈

≈
𝐹

𝜋2𝜔0
2𝑚𝑒𝑓𝑓

2 න
−∞

∞ ⅆ𝜔

𝜔0 − 𝜔
2 +

𝜔0
2𝑄

2 =
𝐹

𝜋2𝜔0
2𝑚𝑒𝑓𝑓

2

2Q

𝜔0
𝜋 =

𝐹𝑄

𝑚𝑒𝑓𝑓
2 𝜔0

3

Thermomechanical noise
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▪ Using equipartition theorem, we can write that:

𝑚𝑒𝑓𝑓 ሷ𝑥 𝑡 +
𝑚𝑒𝑓𝑓𝜔0

𝑄
ሶ𝑥 𝑡 + 𝑘𝑒𝑓𝑓𝑥 𝑡 = 𝜉 𝑡

1

2
𝑘𝑒𝑓𝑓 𝑥

2 𝑡 =
𝑘𝐵𝑇

2

𝑥2 𝑡 =
𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔0
2 =

𝐹𝑄

𝜔0
3𝑚𝑒𝑓𝑓

2 → 𝐹 =
𝑚𝑒𝑓𝑓𝜔0

𝑄
𝑘𝐵𝑇

𝑆𝑥 𝜔 =

𝑘𝐵𝑇
𝑄𝜔0𝑚𝑒𝑓𝑓

𝜔0 − 𝜔
2 +

𝜔0
2𝑄

2 → 𝑆𝑥 𝜔0 =
4𝑄𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔0
3

Thermomechanical noise
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▪ Since the measurements are obtained in Volts, we need a way to calibrate our 
transduction chain

▪ For that we use the thermomechanical noise:
▪ We first measure the noise in volts - 𝑆𝑉
▪ Then we compare with the calculated 𝑆𝑥 using the fact that the thermomechanical 

noise is not white in amplitude

Calibration of the amplitude
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▪ Since the measurements are obtained in Volts, we need a way to calibrate our 
transduction chain

▪ For that we use the thermomechanical noise:
▪ We first measure the noise in volts - 𝑆𝑉
▪ Then we compare with the calculated 𝑆𝑥 using the fact that the thermomechanical 

noise is not white in amplitude

▪ 𝑇𝑜𝑡𝑎𝑙 𝐺𝑎𝑖𝑛 = 𝑅𝑛𝐺 =
𝑆𝑉

𝑆𝑥

Calibration of the amplitude
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Calibration of the amplitude
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Second Order Systems

“Transversal” Measurements



General detection – 2nd order systems
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Digitizer𝑓

Data storage

Transducer

𝜉

ℛ𝜉

Bit resolutionFluctuations in 𝜉

Where are the other noise sources?????



Second order system
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resonant sensor

unperturbed resonance 

frequency = f0

frequency

am
p

lit
u

d
e

f0

imposed force,

displacement,

added mass, 

potential, …

shifted 
resonant
response

f

“gain” 
responsivity

perturbation

𝜹𝝃𝒎𝒊𝒏 =
𝜹𝒇𝒏𝒐𝒊𝒔𝒆
 

x
y

z

Δ𝑓 ∼ ℛ · 𝛿𝜉

frequency shift 

perturbation
(measurand)

𝛿𝜉



▪ Consecutive frequency sweeps to unveil resonance peaks
▪ Slow

▪ Fitting reduces noise

Different ways to track the frequency
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▪ Consecutive frequency sweeps to unveil resonance peaks
▪ Slow

▪ Fitting reduces noise

▪ PLL
▪ Fast

▪ Easier to calculate limit

▪ Noisier?

Different ways to track the frequency
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▪ Introduction▪ How do we 

measure?
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▪ Consecutive frequency sweeps to unveil resonance peaks
▪ Slow

▪ Fitting reduces noise

▪ PLL
▪ Fast

▪ Easier to calculate limit

▪ Noisier?

Different ways to track the frequency
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Loose PLL

Tight PLL

DUT

: Monitor the frequency of 
the Reference Oscillator



▪ Consecutive frequency sweeps to unveil resonance peaks
▪ Slow

▪ Fitting reduces noise

▪ PLL
▪ Fast

▪ Easier to calculate limit

▪ Noisier?

▪ Oscillator (self sustained)
▪ Fastest

▪ Noisiest due to phase freedom?

Different ways to track the frequency
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▪ Resonators: passive, need of a external AC source

▪ Oscillators: active, only DC source, AC output

Resonators & oscillators
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▪ Consecutive frequency sweeps to unveil resonance peaks
▪ Slow

▪ Fitting reduces noise

▪ PLL
▪ Fast

▪ Easier to calculate limit

▪ Noisier?

▪ Oscillator (self sustained)
▪ Fastest

▪ Noisiest due to phase freedom?

Different ways to track the frequency
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Limit of detection
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𝛿𝜉𝑚𝑖𝑛 =
𝜕𝜉

𝜕𝑓
𝛿𝑓𝑚𝑖𝑛 =  𝜉

−1𝛿𝑓𝑚𝑖𝑛 =
𝑓0
 𝜉
· ቤ
𝛿𝑓

𝑓0 𝑚𝑖𝑛

→ 𝛿𝜉𝑚𝑖𝑛 𝜏 =
𝑓0
 𝜉
𝜎𝐴 𝜏

D. Allan, et al., Standard terminology for fundamental frequency and time metrology, 42nd FCS, 1988 

ℛ𝝃 =
𝝏𝒇

𝝏𝝃
− 𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐢𝐯𝐢𝐭𝐲

𝜎𝐴
2 𝜏 =

1

2

ҧ𝑓𝑘+1,𝜏 − ҧ𝑓𝑘,𝜏
2

𝑓0
2 ; ҧ𝑓𝑘,𝜏 =

1

𝜏
න
𝑡𝑘

𝑡𝑘+𝜏

𝑓 𝑡 ⅆ𝑡



Limit of detection
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𝜎𝐴 𝜏 - Time domain

10-6 10-4 10-2 100 102

10-9

10-8

10-7

s
A

t (s)

 Flicker PM

 White FM

 Flicker FM

 Random Walk FM

 Total

Flicker FM ∼ 𝜏0



Noise estimation (White noise)
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ሶ𝑥

𝑥
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▪ To calculate either 𝜎𝐴 𝜏 or 𝑆𝜙 𝑓 we need to know the noise source

▪ In general it is difficult to identify, that is why we only have a formula for the cases 
of White Frequency Modulation (the same as Phase Modulation Random Walk) 
and Flicker FM with origin in a phase modulation fed-back.

How do we calculate the limit of detection?
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𝜎𝐴 𝜏 =
1

𝑄

𝐸𝑁𝑜𝑖𝑠𝑒
𝐸𝑂𝑠𝑐

1/2



▪ To calculate either 𝜎𝐴 𝜏 or 𝑆𝜙 𝑓 we need to know the noise source

▪ In general it is difficult to identify, that is why we only have a formula for the cases 
of White Frequency Modulation (the same as Phase Modulation Random Walk) 
and Flicker FM with origin in a phase modulation fed-back.

How do we calculate the limit of detection?
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𝜎𝐴 𝜏 =
1

𝑄

𝐸𝑁𝑜𝑖𝑠𝑒
𝐸𝑂𝑠𝑐

1/2

Why can’t we bring the Limit of Detection to zero then?



▪ Nonlinearity as a limit

Why not going NL? – A graphical view
M

E
4

2
6

 -
L

e
c

tu
re

 8
 -

N
o

is
e

 a
n

d
 M

e
a

s
u

re
m

e
n

ts

29

ሶ𝑥

𝑥



ሶ𝑥

𝑥

▪ Nonlinearity as a limit

Why not going NL? – A graphical view
M

E
4

2
6

 -
L

e
c

tu
re

 8
 -

N
o

is
e

 a
n

d
 M

e
a

s
u

re
m

e
n

ts

30

Amplitude-phase 
conversion


