

8 - Noise and Measurements

ME-426 - Micro/Nanomechanical Devices

Prof. Guillermo Villanueva

École polytechnique de Lausanne

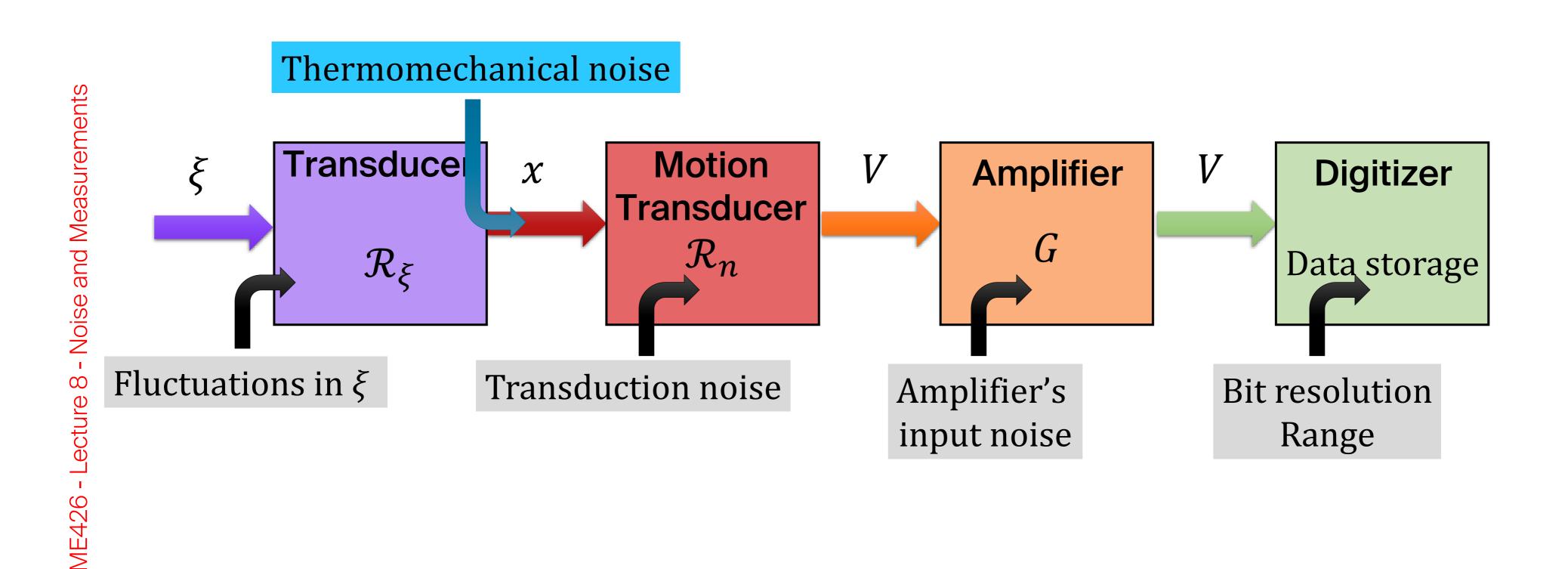
EPFL Introduction

- First order systems
 - Electronic noise
 - Amplifier noise
 - Thermomechanical noise
- Second order systems
 - Frequency noise
 - Allan Deviation
 - Estimation
 - Nonlinearity as a limit

EPFL Force detection



EPFL General detection – 1st order systems



EPFL Noise

- Noise are fluctuations of a given parameter in a random or quasi-random manner
- These fluctuations are added in squares
- We can define the power spectral density:

$$\vartheta(t)_{noise}^{2} = \langle \vartheta(t)^{2} - \langle \vartheta(t) \rangle^{2} \rangle = \lim_{T \to \infty} \frac{1}{T} \left[\int_{0}^{T} |\vartheta(t)|^{2} dt - \left| \int_{0}^{T} \vartheta(t) dt \right|^{2} \right] = \int_{-\infty}^{\infty} S_{\vartheta}(f) df$$

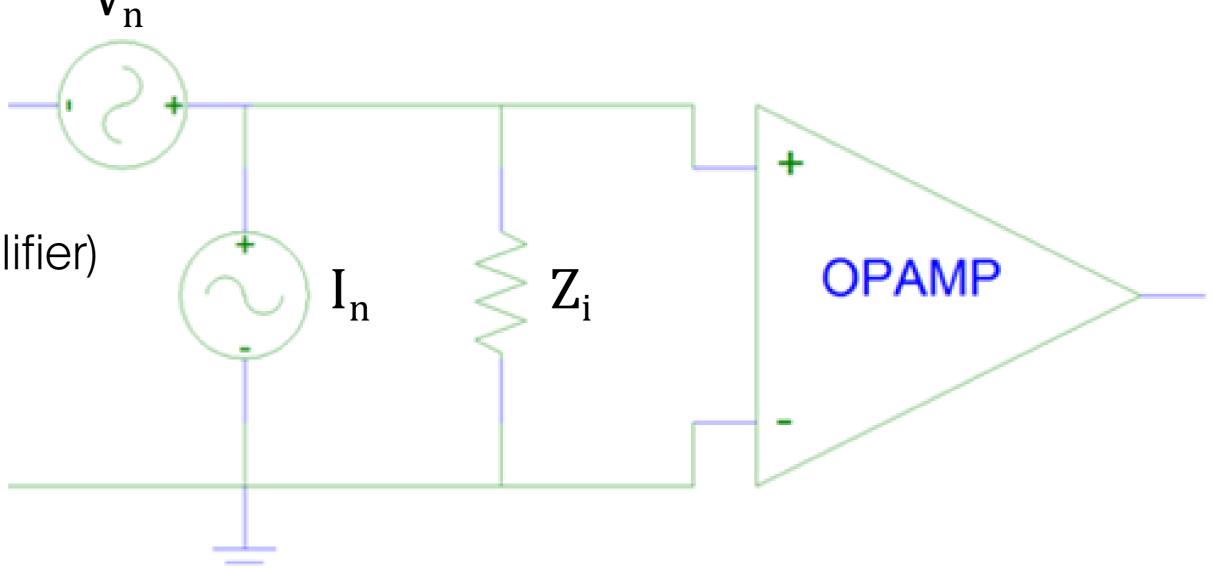
- Power spectral density and signal autocorrelation are fourier transforms of one another
- Note that for random noise, autocorrelation is a Dirac delta and PSD is constant for all frequencies
 - Definition of white noise

EPFL Electronic noise

- Johnson-Nyquist noise
 - Thermodynamic fluctuations of electrons and electron states
 - White till a cut-off frequency is reached
 - $S_V = 4k_BTR$
 - For Room Temperature, $R=50~\Omega \rightarrow S_V^{1/2}=0.9 \frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$; $S_V=0.08 \frac{\mathrm{nV}^2}{\mathrm{Hz}}$
- Shot noise
 - Quantized charge transport
 - $S_I = \zeta 2eI$
- 1/f noise
 - Not clear origin, but clear that is a non-equilibrium noise
 - Can be found in almost every system
 - $S_V \propto \frac{1}{f^{\alpha}}$; with $0.5 < \alpha < 2$ in general. For resistors: $S_V \propto \frac{\beta}{n_{carriers}} \frac{V^2}{f}$

EPFL Amplifier noise

- Amplifiers are NOT ideal
- They are composed by transistors, diodes, resistors, etc.
- We model their noise by using:
 - Input voltage noise
 - Input current noise
 - Input impedance (noiseless)
 - Noiseless gain stage (ideal amplifier)



EPFL Thermomechanical noise

- Fluctuation-Dissipation theorem
 - Every system with dissipation "feels" a fluctuating (random) "force"
 - This theorem is very general but in mechanical devices creates thermomechanical noise

$$m_{eff}\ddot{x}(t) + \frac{m_{eff}\omega_0}{Q}\dot{x}(t) + k_{eff}x(t) = \xi(t)$$

$$\langle \xi(t)\xi(t')\rangle = 2F\delta(t-t'); \begin{cases} \xi(t) = \int_{-\infty}^{\infty} \xi(\omega) e^{i\omega t} \frac{d\omega}{2\pi} \\ \xi(\omega) = \int_{-\infty}^{\infty} \xi(t)e^{i\omega t} dt \end{cases}$$

$$\langle \xi(\omega)\xi(\omega')^*\rangle = \iint_{-\infty}^{\infty} \langle \xi(t)\xi(t')\rangle e^{-i\omega t} e^{i\omega't'} dt dt' = 2F \int_{-\infty}^{\infty} e^{-i(\omega-\omega')t} dt = 4\pi F \delta(\omega-\omega')$$

$$\xi(t) \text{ real}$$

EPFL Thermomechanical noise

$$m_{eff}\ddot{x}(t) + \frac{m_{eff}\omega_0}{Q}\dot{x}(t) + k_{eff}x(t) = \xi(t)$$

$$X(\omega) = \frac{\frac{\xi(\omega)}{m_{eff}}}{(\omega_0^2 - \omega^2) + i\frac{\omega_0}{Q}\omega} \rightarrow \langle X(\omega)X(\omega')^* \rangle = \frac{1}{m_{eff}^2} \frac{4\pi F \delta(\omega - \omega')}{(\omega_0^2 - \omega^2)^2 + \left(\frac{\omega_0 \omega}{Q}\right)^2}$$

$$\langle x^{2}(t)\rangle = \iint_{-\infty}^{\infty} \langle X(\omega)X(\omega')^{*}\rangle e^{i(\omega-\omega')t} \frac{d\omega}{2\pi} \frac{d\omega'}{2\pi} = \frac{F}{\pi m_{eff}^{2}} \int_{-\infty}^{\infty} \frac{d\omega}{(\omega_{0}^{2} - \omega^{2})^{2} + \left(\frac{\omega_{0}}{Q}\omega\right)^{2}} \approx \frac{F}{\pi 2\omega_{0}^{2}m_{eff}^{2}} \int_{-\infty}^{\infty} \frac{d\omega}{(\omega_{0} - \omega)^{2} + \left(\frac{\omega_{0}}{2Q}\right)^{2}} = \frac{F}{\pi 2\omega_{0}^{2}m_{eff}^{2}} \frac{2Q}{\omega_{0}} \pi = \frac{FQ}{m_{eff}^{2}\omega_{0}^{3}}$$

EPFL Thermomechanical noise

Using equipartition theorem, we can write that:

$$m_{eff}\ddot{x}(t) + \frac{m_{eff}\omega_0}{Q}\dot{x}(t) + k_{eff}x(t) = \xi(t)$$

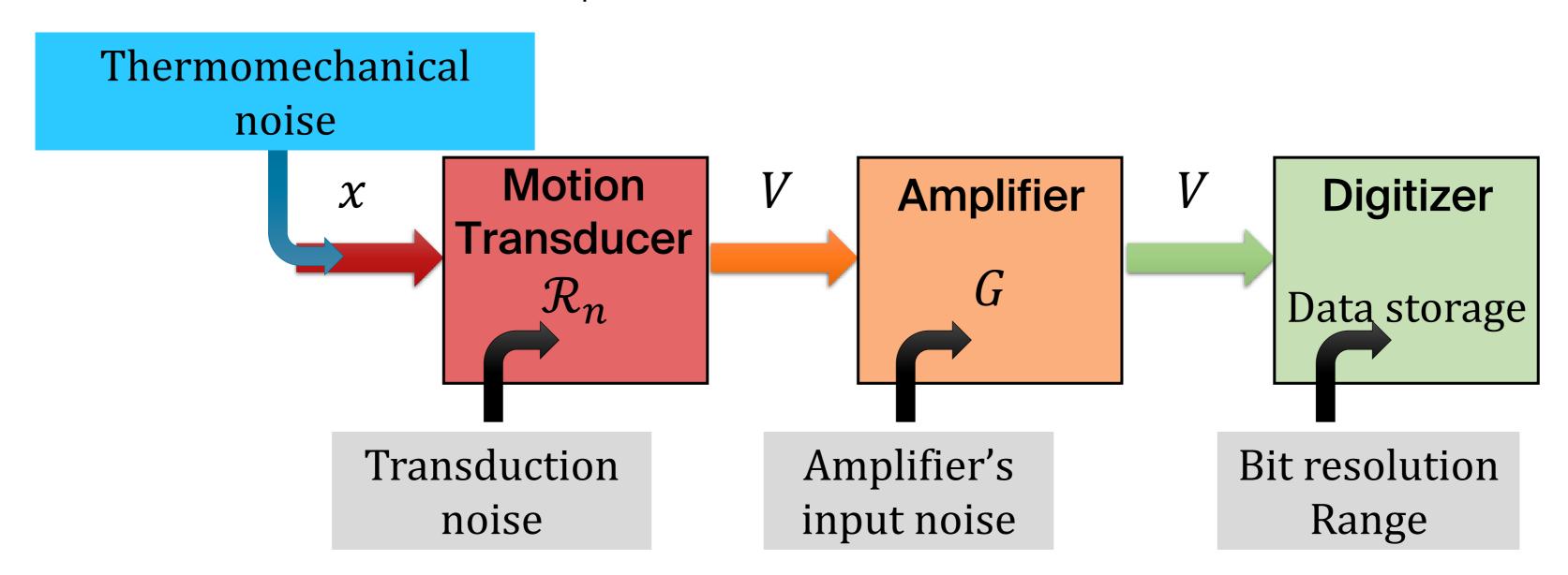
$$\frac{1}{2}k_{eff}\langle x^2(t)\rangle = \frac{k_B T}{2}$$

$$\langle x^2(t)\rangle = \frac{k_B T}{m_{eff}\omega_0^2} = \frac{FQ}{\omega_0^3 m_{eff}^2} \to F = \frac{m_{eff}\omega_0}{Q} k_B T$$

$$S_{\chi}(\omega) = \frac{\frac{k_B T}{Q\omega_0 m_{eff}}}{(\omega_0 - \omega)^2 + \left(\frac{\omega_0}{2Q}\right)^2} \to S_{\chi}(\omega_0) = \frac{4Qk_B T}{m_{eff}\omega_0^3}$$

EPFL Calibration of the amplitude

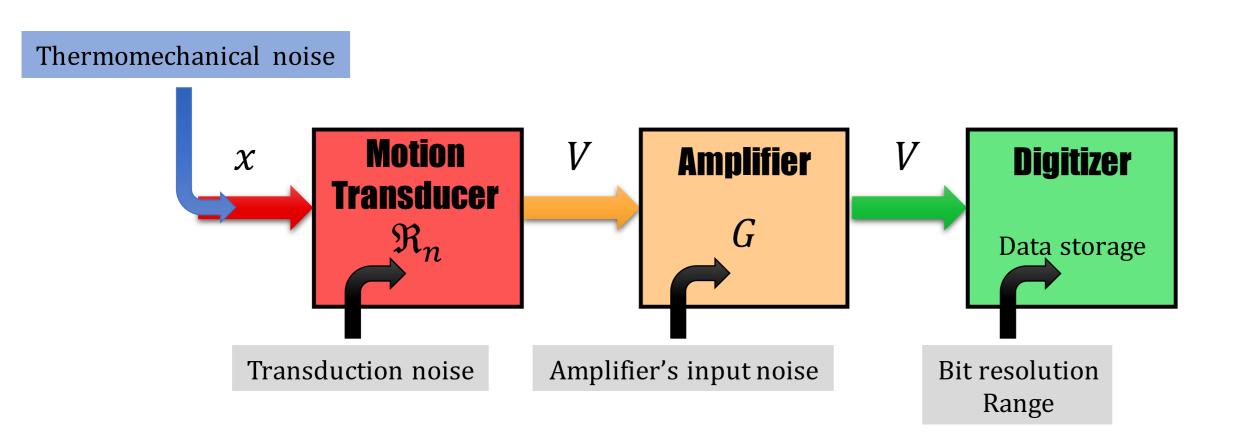
- Since the measurements are obtained in Volts, we need a way to calibrate our transduction chain
- For that we use the thermomechanical noise:
 - We first measure the noise in volts S_V
 - Then we compare with the calculated S_x using the fact that the thermomechanical noise is not white in amplitude

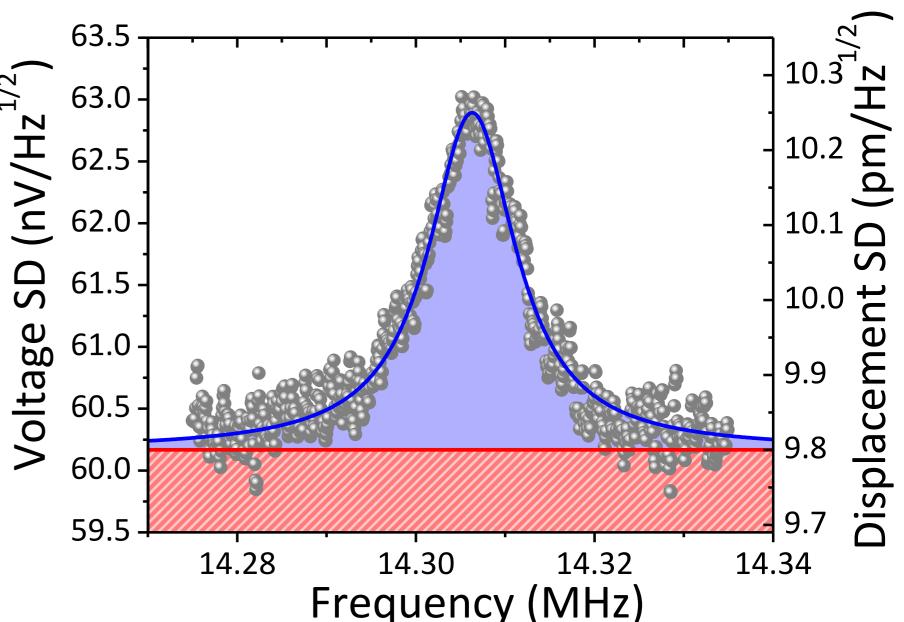


EPFL Calibration of the amplitude

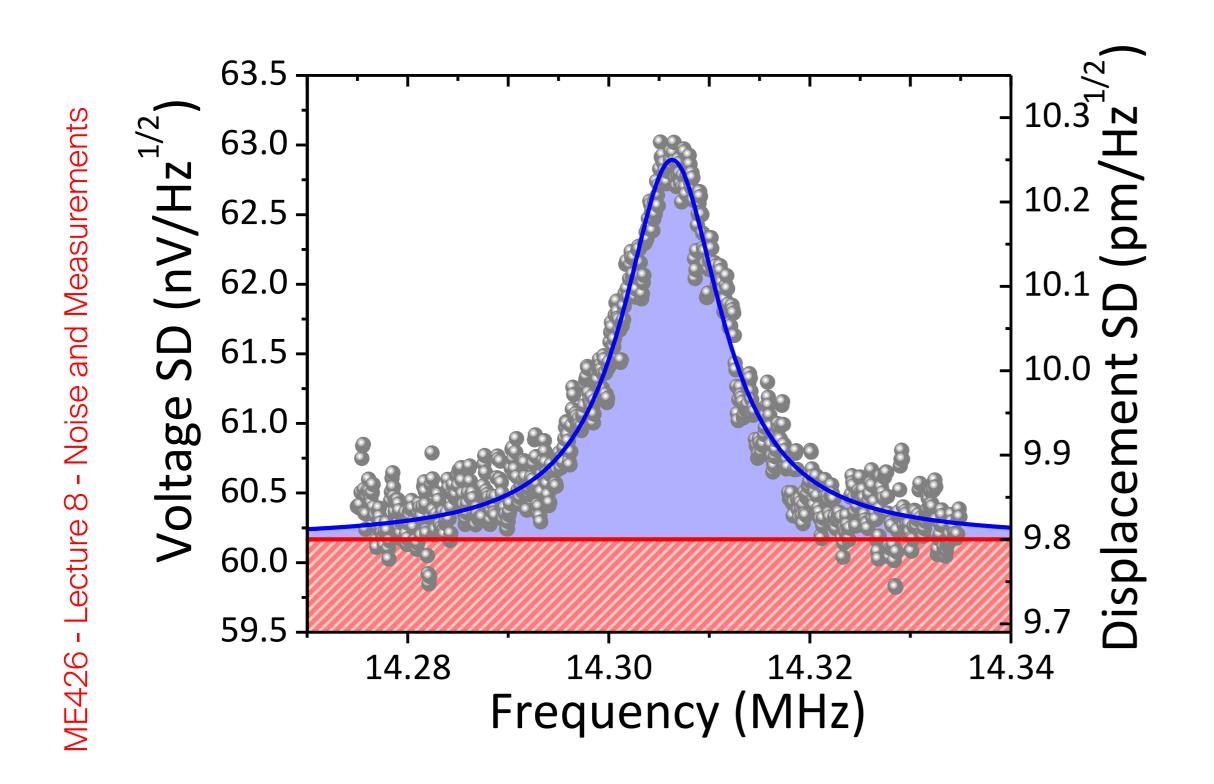
- Since the measurements are obtained in Volts, we need a way to calibrate our transduction chain
- For that we use the thermomechanical noise:
 - We first measure the noise in volts S_V
 - Then we compare with the calculated S_x using the fact that the thermomechanical noise is not white in amplitude

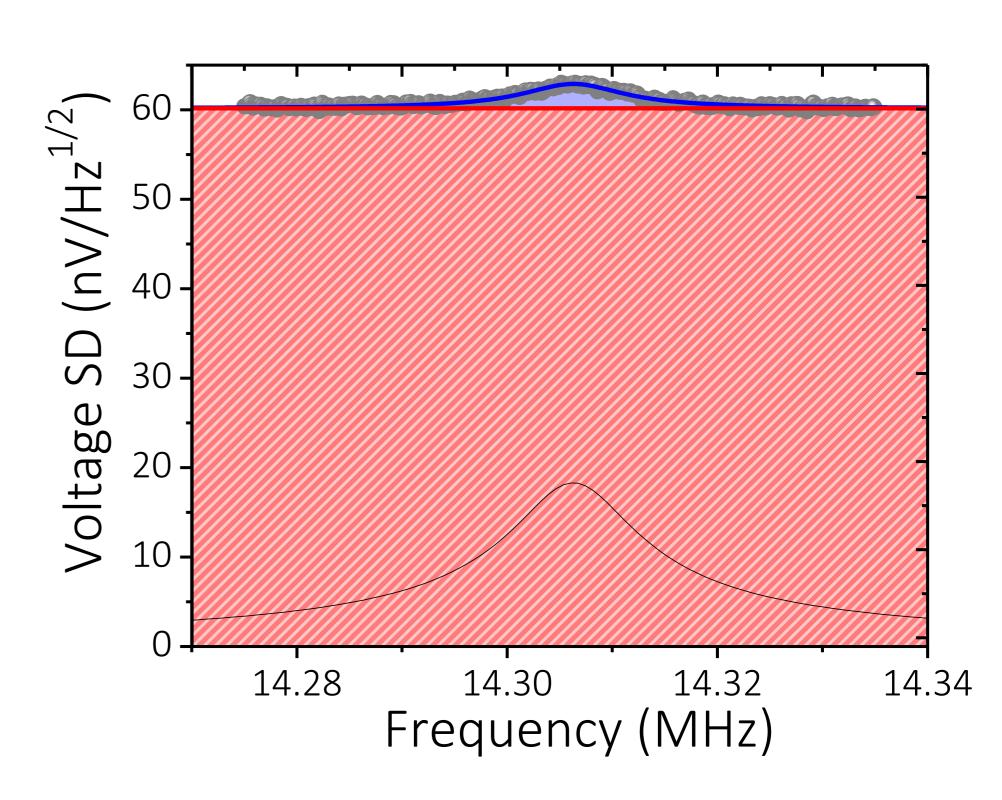
• Total Gain =
$$R_nG = \sqrt{\frac{S_V}{S_X}}$$



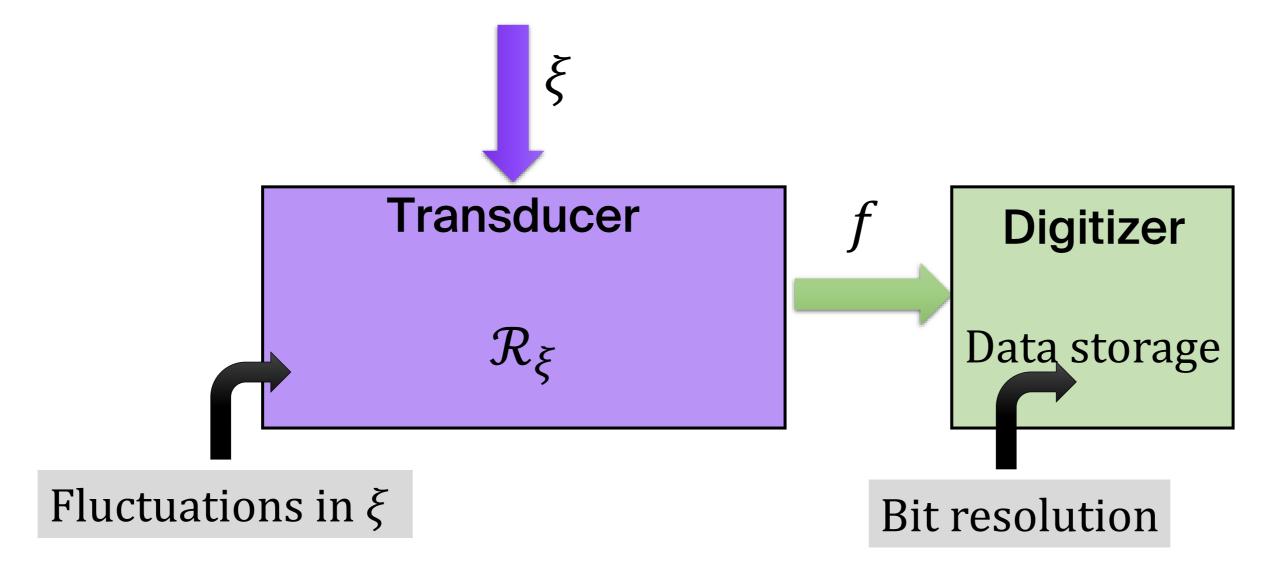


EPFL Calibration of the amplitude



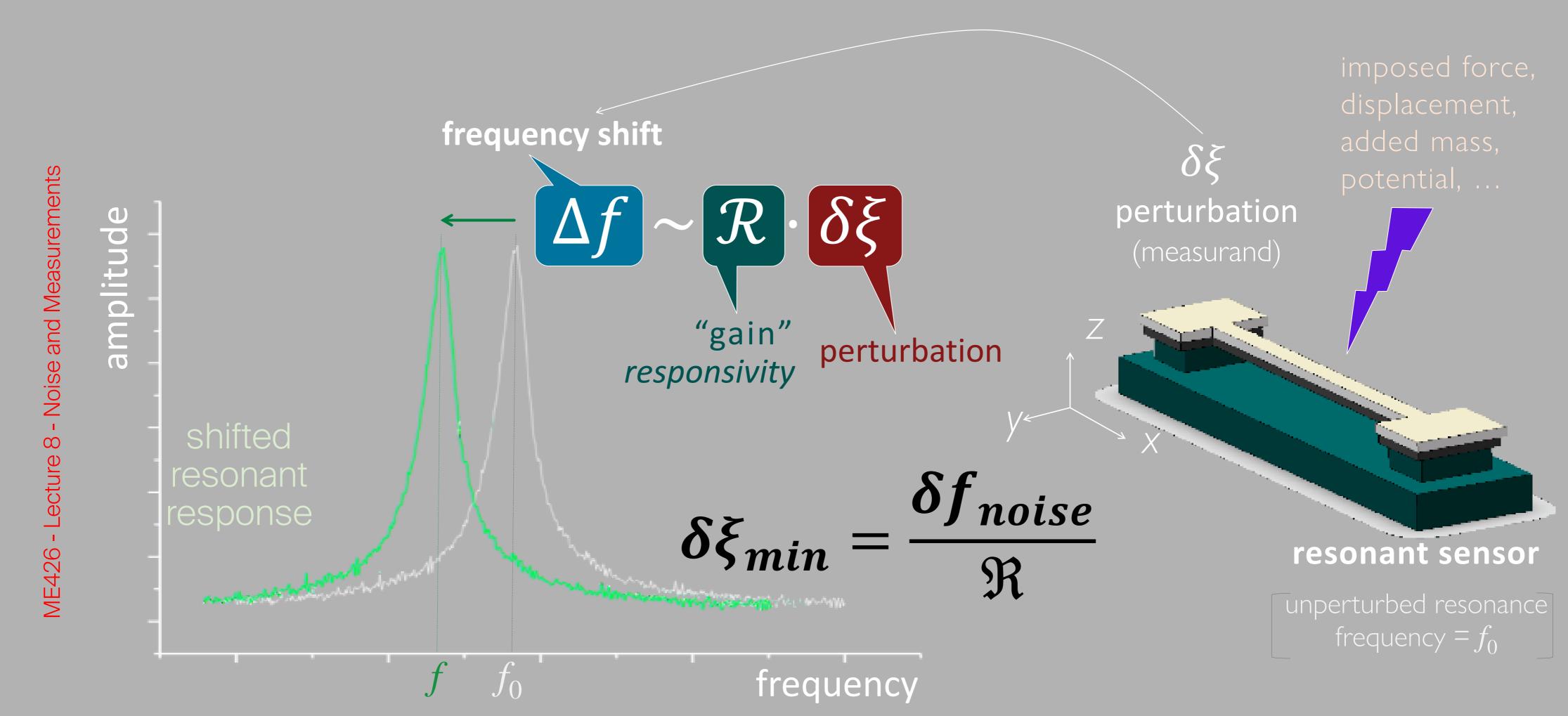


EPFL General detection – 2nd order systems

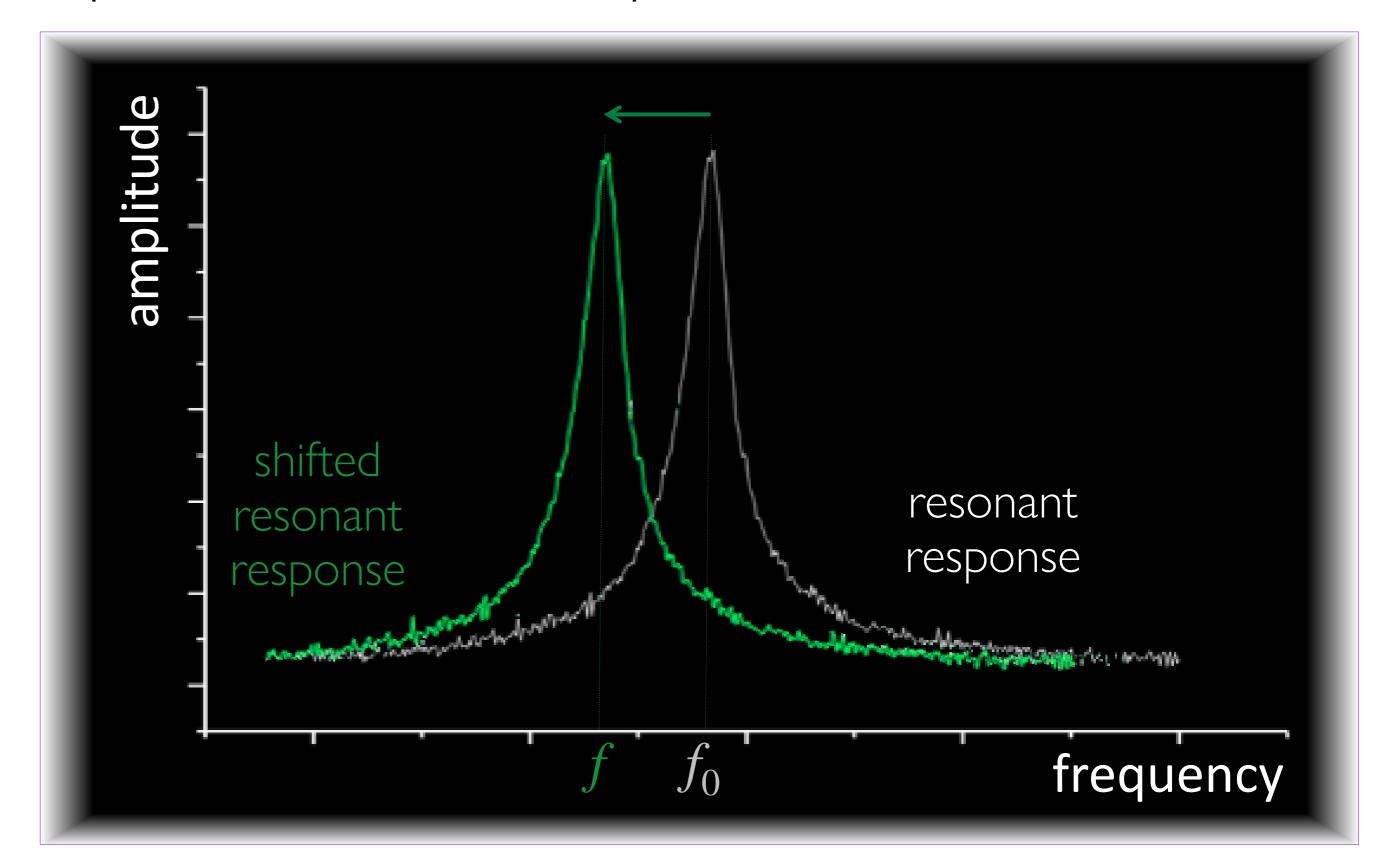


Where are the other noise sources?????

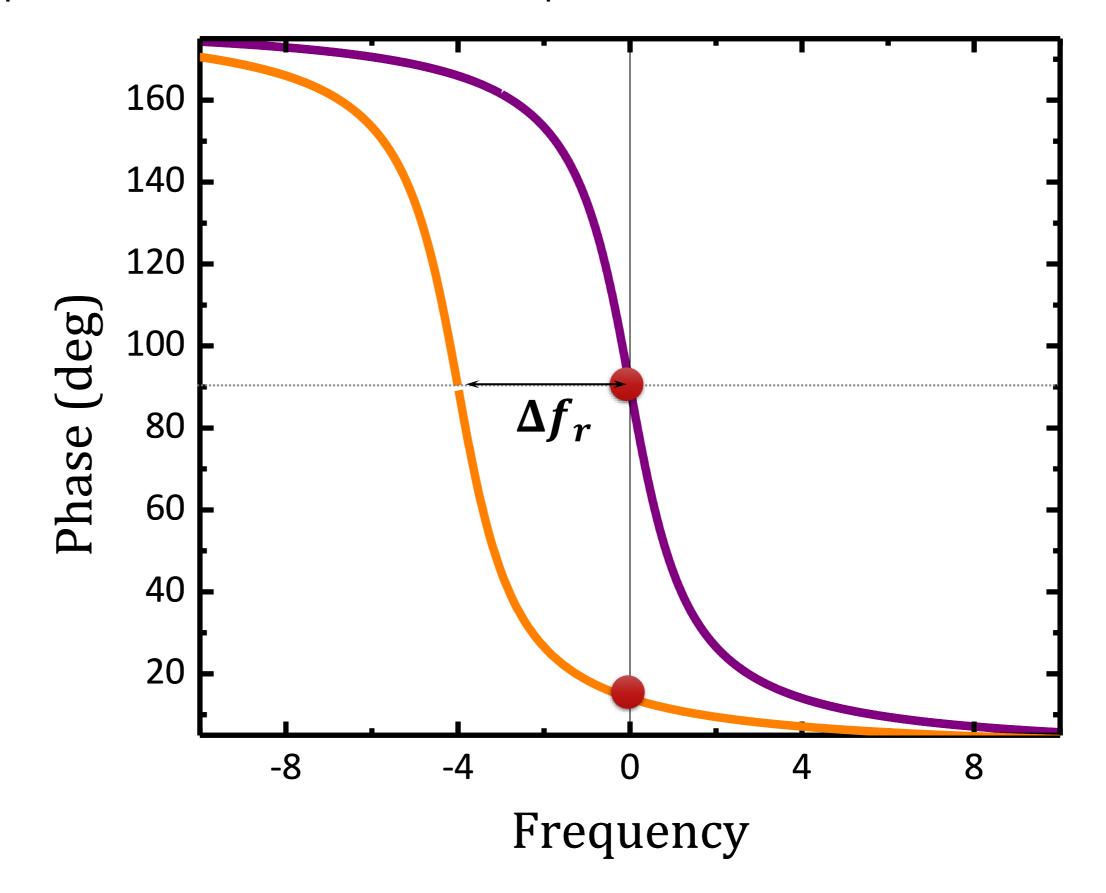
EPFL Second order system



- Consecutive frequency sweeps to unveil resonance peaks
 - Slow
 - Fitting reduces noise

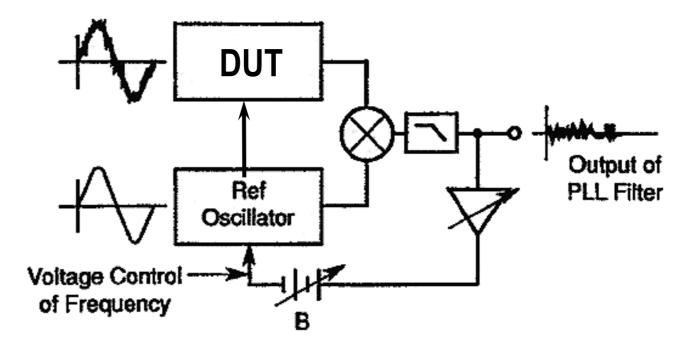


- Consecutive frequency sweeps to unveil resonance peaks
 - Slow
 - Fitting reduces noise
- PLL
 - Fast
 - Easier to calculate limit
 - Noisier?



- Consecutive frequency sweeps to unveil resonance neaks
 - Slow
 - Fitting reduces noise
- PLL
 - Fast
 - Easier to calculate limit
 - Noisier?

Loose PLL

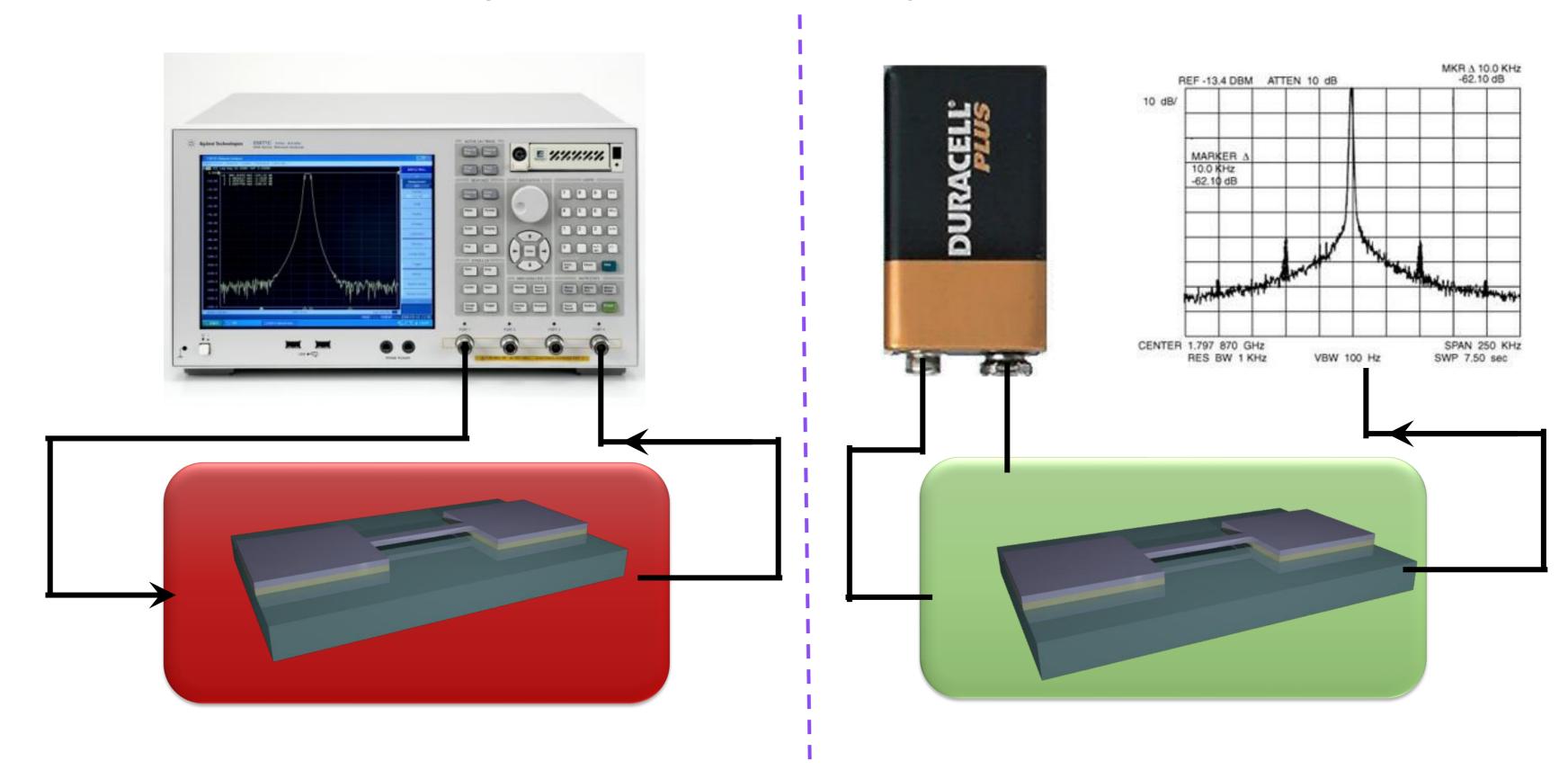


Tight PLL: Monitor the frequency of the Reference Oscillator

- Consecutive frequency sweeps to unveil resonance peaks
 - Slow
 - Fitting reduces noise
- PLL
 - Fast
 - Easier to calculate limit
 - Noisier?
- Oscillator (self sustained)
 - Fastest
 - Noisiest due to phase freedom?

EPFL Resonators & oscillators

- Resonators: passive, need of a external AC source
- Oscillators: active, only DC source, AC output



- Consecutive frequency sweeps to unveil resonance peaks
 - Slow
 - Fitting reduces noise
- PLL
 - Fast
 - Easier to calculate limit
 - Noisier?
- Oscillator (self sustained)
 - Fastest
 - Noisiest due to phase freedom?

EPFL Limit of detection

$$\mathcal{R}_{\xi} = \frac{\partial f}{\partial \xi} - \text{Responsivity}$$

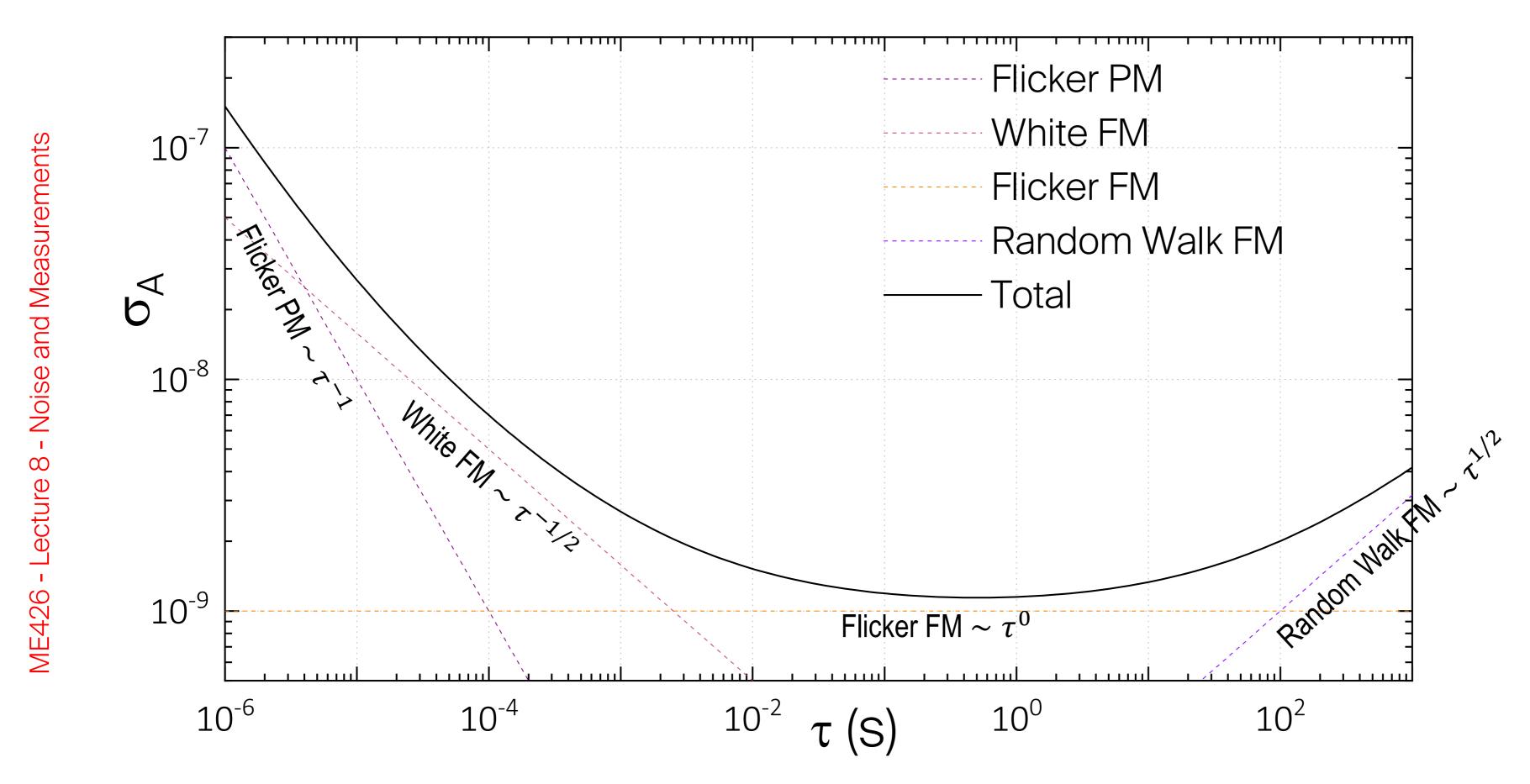
$$\delta \xi_{min} = \frac{\partial \xi}{\partial f} \delta f_{min}$$

$$\to \delta \xi_{min}(\tau) = \frac{f_0}{\Re_{\xi}} \sigma_A(\tau)$$

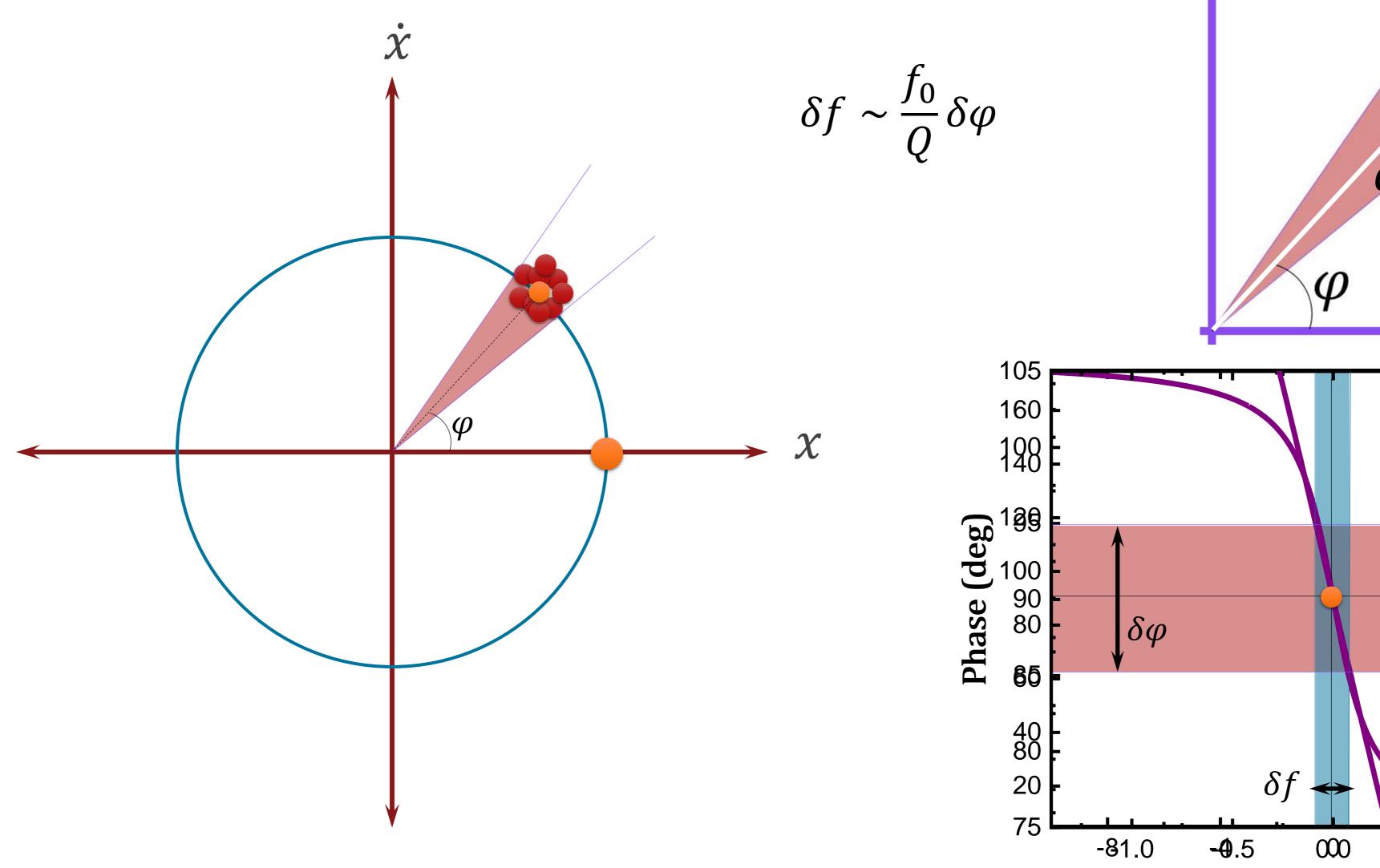
$$\sigma_A^2(\tau) = \frac{1}{2} \left\langle \frac{\left(\bar{f}_{k+1,\tau} - \bar{f}_{k,\tau}\right)^2}{f_0^2} \right\rangle; \qquad \bar{f}_{k,\tau} = \frac{1}{\tau} \int_{t_k}^{t_k + \tau} f(t) dt$$

$$\bar{f}_{k,\tau} = \frac{1}{\tau} \int_{t_k}^{t_k + \tau} f(t) dt$$

EPFL Limit of detection



D. Allan, et al., Standard terminology for fundamental frequency and time metrology, 42nd FCS, 1988



1.08

0.\$

Frequency

ME426 - Lecture 8 - Noise and Measurements

EPFL How do we calculate the limit of detection?

- To calculate either $\sigma_A(\tau)$ or $S_{\phi}(f)$ we need to know the noise source
- In general it is difficult to identify, that is why we only have a formula for the cases of White Frequency Modulation (the same as Phase Modulation Random Walk) and Flicker FM with origin in a phase modulation fed-back.

$$\sigma_{A}(\tau) = \frac{1}{Q} \left(\frac{E_{Noise}}{E_{osc}}\right)^{1/2}$$

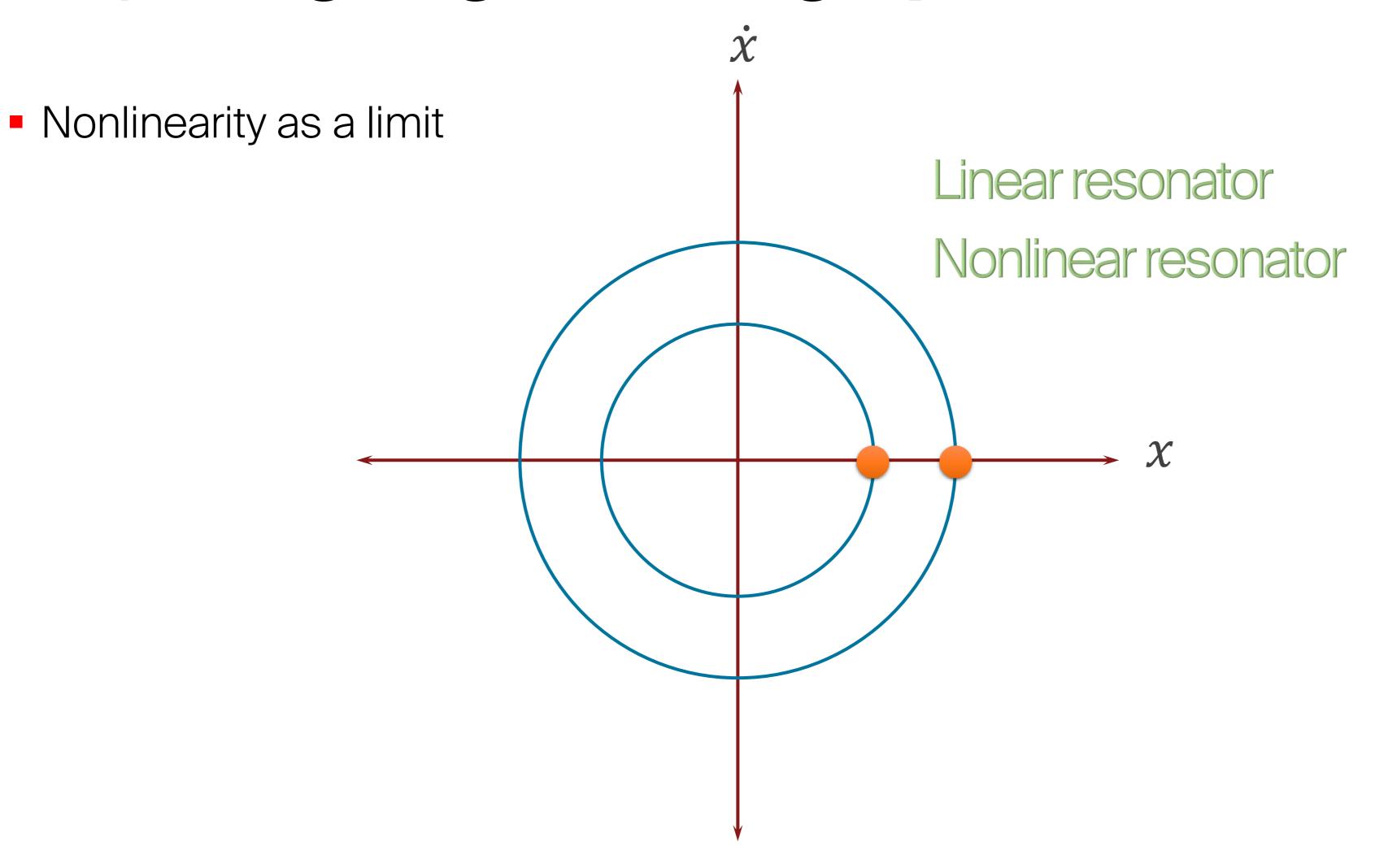
EPFL How do we calculate the limit of detection?

- To calculate either $\sigma_A(\tau)$ or $S_{\phi}(f)$ we need to know the noise source
- In general it is difficult to identify, that is why we only have a formula for the cases of White Frequency Modulation (the same as Phase Modulation Random Walk) and Flicker FM with origin in a phase modulation fed-back.

$$\sigma_A(\tau) = \frac{1}{Q} \left(\frac{E_{Noise}}{E_{Osc}}\right)^{1/2}$$

Why can't we bring the Limit of Detection to zero then?

EPFL Why not going NL? – A graphical view



EPFL Why not going NL? – A graphical view

